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Summary 

The steady-state Reynolds equation for gas lubricating films leads to a quasilinear boundary-value problem in 
two dimensions. This equation contains a first-order derivative term whose coefficient is nonlinear and also large 
for most of the practical cases. Thus, this becomes a quasilinear singular perturbation problem. Existing 
numerical schemes are faced with the failure of convergence as well as numerical instability which often results in 
overshooting the answers. Asymptotic approximations also give poor results if the film-thickness ratios are not 
small. In this paper an accurate and reliable numerical scheme is presented. Convergence is proved independent 
of the bearing numbers and film-thickness ratios. A weighted upwind-difference form is used to discretize the 
differential equation. Theory of M-matrices and associated inequalities are employed to prove the ensuing 
monotonicity. The analysis presented in this paper can be extended to a more general class of singular-perturba- 
tion quasilinear boundary-value problems. Numerical results and graphs for pressure distributions and bearing 
loads are provided for the parabolic slider. Comparisons are made with other existing results concerning 
numerical as well as asymptotic analysis. 

1. Introduction 

The most  commonly  encountered  problem in lubr icat ion technology is that of producing  
data  (pressure distr ibutions,  result ing forces and  moments ,  friction power losses) for 
steady-state operat ion of gas-bearing systems. Once the pressure dis t r ibut ion has been 
obtained,  it is easy to evaluate other data. The steady-state Reynolds  equat ion for the 
pressure p(~,  7/) at a point  (~, ,/) in  a compressible lubr icat ing film is 

h3pl/~ aP ~- ] ~ - ~ [ ( h 3 P ' / " ~ ) / P l +  a-~-[(arl a~] / " ]=6u~- -~  (hp ' / ' )  (1.1) 

where p is the viscosity, U is the effective surface velocity, h = h(~, ,/) the film thickness, 7/ 
is the coordinate  direct ion in which the slider is moving, and  n is the exponent  in the 
polytropic gas law 

p#-"  = constant .  (1.2) 

The  problem is to solve (1.1) over a rectangular  region with b o u n d a r y  lines ~ = L/2 ,  
= - L / 2 ,  71 = O, and *! = B. Here, L and  B represent  the length and  breadth  of the film, 

respectively. The fi lm-thickness funct ion  is taken to be symmetric,  h(~, ~/)= h ( - ~ ,  ,/). 



Since this symmetry implies a symmetry in the pressure function, p(~, 7 / ) = p ( - ~ ,  ,/), it 
suffices to consider only the upper half of the rectangle. This symmetry implies the 
boundary condition ap/a~(o,  7/)=0.  The other boundary conditions are p(~, 0)=pa  , 
p (~, B) = Pa, and p (L /2 ,  ~) = pa, where p~ represents the ambient pressure. 

With gaseous lubricant and metallic materials, the fluid film is essentially isothermal. 
Thus for most gases, viscosity can be regarded as a constant and n is taken as 1 in (1.2). 
Equation (1.1) can be made dimensionless by normalizing all the variables with ap- 
propriate reference quantities. That is, P = p/p~, L ' =  L / B  (slenderness ratio), x = ~/B, 
y = *l/B, H = h /hm ,  and A = 6#UB/(h2mpa) where h m is the minimum film thickness in 
the sliding direction. Thus (1.1)becomes 

a ( H s p a P I  O_..~_(H3pOP)=Aa__a_(pH) ' 
-~x [ Ox ] + ay ~ By By 

(1.3) 

where A is called the Reynolds number or bearing number. The boundary conditions are 
P(x, 0) = 1, P(x, 1) = 1, P( L' /2 ,  y)  = 1, and oP/ax(O, y)  = 0 for 0 ~ x ~ L' /2 ,  0 ~ y <~ 1. 
the y-coordinate gives the direction in which the slider is moving. For more details, see [1], 
Ch. 1. In view of the difficulties encountered by purely analytical methods in dealing with 
the nonlinear nature of (1.3), the application of numerical methods to gas-bearing 
problems is of great importance. Further, it is noted in [1], pp. 188, that, " in  fact, physical 
experimenlation is so difficult that experimentation with a computer is likely to be more 
practical". Thus, it is important to have a reliable, economical and stable (accurate) 
numerical scheme. In this paper, such a scheme will be presented. The existing iterative 
techniques [1, Ch. 7; 2, 3] are hit-or-miss type. That is, success (convergence) of these 
schemes are not a priori known and their behaviours are very disappointing, especially 
when the Reynolds numbers and the film-thickness ratios are large. In fact, it is remarked 
in [3] that, " the  convergence characteristics of these iteration techniques are difficult to 
analyse and skill and past experience are the most valuable guides in this field". The 
existing schemes are not only faced with the failure of convergence, but also they show 
numerical instability which often results in overshooting the answer. Thus, the credibility 
of the computed values with such unstable schemes is questionable. For more detailed 
discussion, see Section 3. The new iterative technique presented in this paper is numeri- 
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Figure  1. Curved  s l ider  bear ing  wi th  crown hight  & Norma l i zed  quant i t ies  are H =  h/h2, H 1 = hl/h 2 
( f i lm-thickness  ratio), and  fl = 8/h2; ~ = H 1 - 1  is referred as the eccentrici ty.  



cally stable, and the convergence of iterations is proved independent of Reynolds numbers 
and film-thickness ratios. 

The bearing shapes considered here are plane, cylindrically curved, and spherically 
curved. Particular nomenclature for the curved slider is shown in Fig. 1. The crown height, 
6, is measured at the geometric center and it is positive for convex and negative for 
concave sliders. The film thickness functions for various geometries are given below. 

For longitudinal cylindrical pads, 

H(y )  = H 1 - -  ( H a - 1)y + 4fly(y - 1). (1.4) 

For transversely crowned pads, 

H( x, y)  = Ha(1 - y) + y + 4flx---~2 
L,2 

(1.5) 

For spherically crowned pads, 

H(x,  y ) =  H ( 1 -  y) + y + 2fl y ( y - 1 )  +-L-S " (1.6) 

The derivation of these expressions and other details can be found in [1], pp. 197-200. In 
the case of an infinitely long slider bearing, the following parabolic film shape is 
considered [4], 

H(y ,  , ,  a ) =  1 + , [ a y  2 - ( 1  + a ) y +  1], (1.7) 

where 1 + c = H a is the film-thickness ratio, and a is the curvature. 
In Section 2 the numerical scheme is given. Computed results for selected examples as 

well as comparisons with other schemes are presented in Section 3. 

2. Numerical procedure 

Under the transformation u = p2H2, the Reynolds equation (1.3) becomes 

. [ bZu 02u] OH ~u OH bu 2( O2H + O2H ) u _~ A 3u 
-H(x'Y)~-~x2+Oy2]+-~x-~x+--~y-ff-yy+ ~ Ox 2 ~y2 x~ ~ ~y . . . .  0 (2.1) 

with boundary conditions u(x, 0).= H2(x, 0), u(x, 1 ) =  HZ(x, 1), u(L/2,  y ) =  
H2(L/2,  y), and Ou/bx(O,y)= O. We set up a grid: xi = iAx, y =jAy with ( M +  1)Ax = 
L/2  and ( N +  1 ) A y =  1. The diffusion term A2u = 02u/Ox]+ ~2u/Oy2 is discretized 
using the standard five-point difference scheme. The first-order derivative terms in the 
linear part of (2.1) are approximated using centered differences. The nonlinear term is 
approximated as 

Auy = A Aui.j 
, , j  a y  ' 

1 - a  l + a  
Aug,j= 2 ui'J+l + aui'J 2 ui'J-a' (2.2) 



where ui.j = u(x,  yg) and a, 0 ~< a ~< 1, is the coefficient of upwind differencing which will 
be decided later. Notice that a = 0 corresponds to the centered-difference approximation, 
and a = 1 leads to full upwind form. The resulting nonlinear system can be written as 

A Au + A y----~ Au = b, 
Cu (2.3) 

where b is the given vector determined by the boundary conditions, u =  (ui,j) is the 
unknown vector, and A is a non-singular NM × NM matrix which represents the linear 
part  in (2.1). For the (i , j)th grid point, (2.3) gives 

s ( i , j ) u i ,  j + s , ( i , j ) u i . j _  , + s2( i , j )u i . j+l  + s3 ( i , j )u i_ , . j  

A 
+s4( i , j )u i+l .  j + A y ~ A u i ,  j = 0 ,  Cu,, 

where 

s,,i,,,= (-,-,-%.),.., 

s3(i,j) = ( - o H -  ---~Hxj°Ax Xli.j, 

sa(i , j )= (-oH+oA_XHx]I , and = ( A Y / 2  
2 ][i.j o -~x} " 

(2.4) 

The normal derivative boundary condition is approximated as u,4 = Uo4 ( J  = 1, 2 . . . . .  N).  
The coefficient of upwind differencing ai. j is chosen so that 

that is, 

aid >/ 1 
( 2 H  - AyHv)ij  

A A y  
( / = 1 , 2  . . . . .  M ; j = I , 2  . . . . .  N ) .  

Let _u be a lower solution of (2.3) (see the Appendix). Then, Oti. j is chosen as 

aio=max(O' I -  [ (2H(xi 'y j ) -AyHy(xi 'y j ) )  u-~iJ] 



For  convenience, delete the subscripts in a, 

Q(k-l), a block diagonal matrix, as 

ON,I 

7 

and denote  f(ui.j)= AAy /u~ , j .  Define 

DN•M 

where DN, , is an N × N diagonal matrix (w~-l) . . . . .  w~,~-l)), 

wi[k-l)=max{O,[f'(u}~-l))l[~--~-~fi~,j_l--(au}~-l)+ ( - ~ u } ~ + ~ ) ) ]  }. (2.5) 

Here,  fi is an upper  bound for u (k). The construct ion of fi will be discussed later. 
To  solve (2.3), the following iterative scheme is considered. 

Au (k) + f (  u(k- l ) )AU (k) + Qtk- l )u (k )= b + Q(k-Uu(k-1), 
(2.6) 

u ( ° )=u ,  for k = l , 2  . . . . .  

Define, for i = 1, 2 . . . .  , M; j = 1, 2 . . . . .  N, 

g(k-')( i , j  ) =: s( i, j ) + af('ui, j'k- l, ) + W(kj- l,, 

g[,_1)( i , j )=s, ( i , j  ) ( l + a ) f ( u } ~ _ l ) ) ,  
2 

g(k-l)ti i~= (-~2 a) 2 , ,.,, s2(i , j )+ f ( u ( * - l ) ) ,  - ' i , j  

g3(i , j )=s3( i , j ) ,  

g4( i , j )=s4( i , j ) ,  

where s, sl, s2, s3 and s4 are given by (2.4). Fix i ~  {1, 2 . . . .  ,M} ,  a n d j ~  {1, 2 . . . . .  N}.  
With the above notations,  (2.6) gives 

(k)+,,)(k-1)l; ;'~.,(k) ,.,,(k-1)(i i'~,,(k) r,,(k-1)[; ;'~.,(k) g ~ k - l ) ( i , j ) u i , j  t51 t ' , JJ• i , j - I  "J-152 I , ' ,d)"i , j+l "-1"-~53 I , t , JJ" i - l , j  

o (k - l ) ( ;  ;~,(k)  =0,  dr64 ~6,J1~i+1,  j 

where u(k)l.j -- Uo.j,(*) ,'i.o"(k) _- H2(xi, 0), -i,N+a'Ak) = H2(xi, 1), -M+l.j"(k) _-- H2(L,/2, yj). 



Let T tk- 1) be the following block tridiagonal matrix, 

T ( k - 1 )  = 

-G 1 S 1 

R2 G 2 $2 

SM-I 
RM GM 

a I 

-~(1, 1) gz~*-')(1, 1) 

g[k-~)(1, 2) ~(1, 2) g~*-t)(1, 2) 

gtzk-')(1, N -  1) 

g~k-')(1, N)  ~(1, M)  
N x N  

~ ( 1 , j ) = g ~ k - l ) ( 1 , j ) - - g 3 ( i , j )  ( j =  1, 2 . . . . .  N); for i = 2 ,  3 . . . . .  M, 

a i 

g 'k - l ) ( i ,  1) g2(k-')(i, 1) 

g~k-1)(i, 2) g(k- ' ) ( i ,  2) g~k-1)(i, 2) 

g ~ k - l ) ( i , N )  

g2~*-')(i, N -  1) 

g ~ k - l ) ( i , N )  
N x N  

R i = diagonal (g3(i, 1) . . . . .  g3(i, N))N×N, 
for i = 1, 2 . . . . .  M. 

Now, equation (2.6) can be rewritten as 

and S i = diagonal (g4(i, 1) . . . . .  g4(i, M))N× N 

T(k-1)u ¢k) = b + Q~k- ~)U(k- ". (2.8) 

Notice that if the slider is of infinite length then the second-derivative term with respect to 
x will be dropped in (1.3) and it becomes a problem in one dimension. In this case, T tk- 1) 
is simply a tridiagonal matrix similar to G i (without the i index)• 

By our choice of a, the coefficient of upwind differencing (2.4), it follows that 
gz~k-1) ~< 0. Since a >~ 0, and the Reynolds number A i n f ( u )  will dominate the term g~k-1), 
one can obtain that g~k-l)<~ O. Notice that for film type (1.4), H~ = 0. In this case, it 
readily follows that g3 and g4 are nonpositive. For other film types, in practice, the 
normalized crown height will be small. Thus, in these cases also (if necessary, by properly 
choosing the grid), one can have that g3 ~<0 and g4<O. So, the matrix T tk-~) is 
off-diagonally nonpositive. Further, whenever the normalized crown height fl >/0, it is 
easy to check that 

g~k-,)(i, j )  + g~k- , , ( i , j )  + g~k- l ) ( i , j  ) + g3 ( i , j )  + g4( i , j )  >/ O. 

In the other case also, since fl is small in practice, one can see (if necessary, by choosing 
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wi. j >~ 2(Ay)Z(Hxx + Hyy) ,,jl) that the same inequality is true. Hence, the matrix T (k-l) 
is diagonally dominan t  and off-diagonally nonpositive. Further,  the lower triangular 
submatrix of  T (k-l)  is strictly diagonally dominant .  Thus, by Theorem" A.1 of  the 
Appendix,  T (k-l)  is an M-matrix.  That  is, T (k-1) is inverse positive for k = 1, 2 . . . . .  

Choose fi = max,.j(bcj } for i = 1, 2 . . . . .  M; j = 1, 2 . . . . .  N. Notice that fi >/b, and u is 
taken as u ~< ft. Now,  it will be shown that fi >/u (k), for k = 1, 2 . . . . .  To make the ideas 
clear for the proof  of  this part, consider the case fl >_- 0 only. (For  a complete discussion, 
see Section 2.2). By selection, fi >_- _u = u t°). Assume that  fi >~ u t k - ° .  Since Q(k-1)>~ O, it 
follows that 

T(k-o~  >~ b + Q(*-a)~ >~ b + Q(k-1)u(*-x)=  T(k-1)u(~)" 

Thus, since T ( k - °  is inverse positive, fi >~ u (k). By induction, one has fi >/u (k), for k = 1, 2, 
, . . . .  

Next, the object is to prove the iterates u (k), k = 1, 2 . . . . .  are monoton ic  increasing. 
Notice from (2.2) that, for any two vectors u and v, Au - Av = A(u - v). Since u (°) = _u is a 
lower solution (see the Appendix)  one has 

A u (°) + f ( u  t°)) u ~°) ~< b. (2.9) 

So, it follows, by taking k = 1 in (2.6), that 

A ( u " ~  - u ~°)) + f (  u ~°~) a ( u('~ - u ~°)) + Q~O)( u o) _ u~O)) >/0.  

that  is, 

T(°)( u O) - u  (°)) >/0. 

This implies, since T (°) is inverse positive, that  u(l)>~ u (°). Assume that u(k)>~ u (k-l) for 
some k. Using (2.6), one obtains 

A ( u  (k+l) _ u(k)) - ] - f (u (k ) )Au  (k+l) _ f ( u ( k - 1 ) ) A u  (k) + O(l')(u(k+o_ u<k)) 

= Q ~ - , ( u ~ ) _  u ~ - , ) .  

That  is, 

A ( u , . + , -  u,~)) + f(u<k))( Au ~k+" -- Au<k)) + Q' ) (  u~k+U_ u,.)) 

= -- { f ( u ( k ) ) A u  (k) - - f ( u ( k - 1 ) ) A u  (k) } + Q(k-1)(U(k)_ uCk-l)). 

Thus, T(k)(u (k+~) -- u Ck)) = R.H.S., where 

R . H . S .  = - { f (u~) )au  < ~ ) - f ( u ' - ' ) A u  v') } + Q~k- ' (u(k)-  u ,~- , ) .  

Now, the aim is to show that R.H.S. >/0. Fix i ~  {1, 2 . . . . .  M } ; j G  {1, 2 . . . . .  M } .  By an 
application of  the mean value theorem, one obtains that 

(k, (k) 1))Au~.~)) + . , k ) _  {R.H.S .} , . i  = - ( f ( u , . j  )Aui. j - f~ . i (u  'k-  , w:,kj-1)(u,,i u~. -1)) 

= (-f'(~, ~,.i,]Au 'k)̀ .i + w].~-1))( u,~)_,., u} 5 - 1)) , (2.10) 
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u tk-1) Notice  that  where ~i.j >/..~.j . 

, ~  . 1 A 
f( , . j ) =  2 ~:-3/2 Ay ~ 0, 

t,J 

and 

If'( g )l <.< lf '(  t2 )l 

In  the case 

whenever ~ , j  >1 O, 

if t I >/ t  2. (2.11) 

,1+o>2 u,,a 

• ,(*-~) it follows that  by  construction,  w~ k-A)= 0. So, f rom (2.11) and ~i.j >~ ,,i,j , 

Hence,  by applying (2.12) in (2.10), one obtains  {R.H.S.}~ d >~ 0. Tha t  is, 

T(k) (u  (k+l) -- u (k)) = R .H.S .  >~ 0. 

Now,  since T (k) is inverse positive, it is easy to see utk+l)>~ U (k). The  conclusion that 
( u tk) } is monoton ic  increasing follows by  induction.  Further ,  since ~ >/u tk), k = 1, 2 . . . . .  
it is clear that  the sequence { u tk) } converges to a limit u*, and u* is the required solution 
of  (2.3). 

2.1. Selection of  lower solution 

For  a convergent  film, i.e., when Hy(x,  y )  <<. O, u = H 2 ( x ,  y)  can be shown to be a lower 
solution (see the Appendix) .  This corresponds  to the fact that  p >~Pa, the ambient  
pressure,  for a convergent  film. If  the film is not a convergent  one, then subambien t  
pressure may  develop. The  s tudy of the design pe r fo rmance  characterist ics of bearings 
requires numerical  da ta  for various Reynolds  numbers .  So if A 1 < A 2 < . . .  < A ,  < . . .  is a 
sequence of  Reynolds  numbers ,  it is natural  to check whether  the solution for A,_~ is a 
lower solution for  A , .  For  this, let v be  the solution of (2.3) for A , _  1- Then, 

Av + - ~ v - I  AyAv = b. 

Consider  the p rob lem (2.3) with A , .  Now,  replacing u by  v, one obtains  that  

+ A" AyAo = b. a v  ¢g 

So, v is a lower solution of (2.3) for  A ,  if 

h yAv A .  ) <~ O. 
Ca ( - h . _ ,  + 

Tha t  is, if Av < O. 
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Since v is already known, this condit ion can be easily verified by computat ion•  If  this 
holds, then v, the solution for A , _  1, is a lower solution for A , .  When  this is not  true, 
further increase of  A m a y  not  increase the pressure distributions and hence the work load. 
Not ice  that when Ao >~ 0, v is an upper  solution of  (2.3) for A , .  

2.2. Selection o f  upper bound 

Consider  the film shapes (1.4) and (1.7) for a complete  discussion• Similar ideas hold for 
other  geometries also (see also the Appendix).  For  a convergent  film, fi = m a x y [ H 2 ( y ) ]  = 
H2(0). By the above proof,  for convex crowning (fl >t 0), the solution u* ~< ft. This means 
that u* = ( P H )  2 ~< fi = H2(0). That  is, p(x )<~  ~ ( x ) =  H ( O ) / H ( x ) .  It  is interesting to note 
that this ~ has been used in the literature (for example, see [1,4]) as the limiting solution of  
(1.3) for A tends to oo. This limiting solution applies to convex as well as concave sliders. 
Because of  this physical reason, fi can be taken as H2(0)  in the numerical  procedure  for 
concave crowning also. Note  that the rate of  convergence depends on the upper -bound  
estimate fi of  u tk), k = 1, 2 . . . . .  I f  fi is large, then the rate of  convergence will be slow. In  
fact, the fi considered above is an over-all c o m m o n  bound  which may  not  be a good one 
for an individual u tk). So, in what  follows, a procedure  is given to construct  fitk), an upper  
estimate to each u tk), depending on the previous iterate u tk- l ) .  

Denote  ~ tk-  l ) ( i , j  ) = s ( i , j )  + af~•y(u tk- 1)). For  simplicity, dropping  the superscript 
(k  - 1) and the index ( i , j )  in ~, gl, g2, g3 and g4 define 

_ 6 1 ~ i • j - - 1  - -  62~i,j+1 -- 6 3 ~ i _ 1 , j  - -  
c i j = max 0, ~u}.~ 1) 

• g + g l  + g 2 + g 3 + g 4  + ' r  f '  

where z > 0. Let c = maxi•y { ccj  ). Now, 

ui. j T + gl + g2 t" i ,J+l  + [ u}-kT,~ ) + C] 

['(k-1)+C] +~'C>~0. "~-g4[ ui+l•j  

. tk- l )  >_ ~ > 0, and v = u tk-1) + c, one gets Lett ing "i•j ~" 

~ v i j + g l v i • j _  +g2vi , j+  1 + g 3 O i _ l , j + g 4 V i + l ,  ) q_W(kj-1)Vi , Wi•j ( k - l )  Ui,j ( k - l )  , 

that  is, 

T<k-1)v >1 Q¢k-1)u<k-1) + b = T~k-l)u~k)" 

Thus, v >1 u tk). Notice  that this estimate holds both  for convex as well as concave sliders. 
Hence we have upper  estimates fi i , and vi, j for u! k),,J . The min imum of these two is to be 
chosen in the computa t ion  of  w~ k-•l') for our  numerical  scheme. Observe that if fii,j is used, 
then there is no  restriction on the min imum positive value of  w/,~ -1). In  the other  case, 
w~-l )>~ ~" > 0. Typically, 7 can be chosen as 0.1 or  0.01. 

We note that the above a priori estimates for Au tk) may  be large when the film-thick- 
ness ratio is large. This, in turn, may  affect the rate of  convergence. Rigorous estimates of  
Au tk), in general, will be more  expensive. So we consider the approximat ion  Au  ~k) ~, 
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A ( u (k - 1) + Z), w h e r e  z = u (k - 1) _ u (k - 2). N o t i c e  tha t  for  the  first  i t e ra te  in (2.6), Q (k) can  

be  ze ro  a n d  still u°)>~ u (°). Th i s  e s t ima te  seems  to be  a r e a s o n a b l e  one.  In  fact  we 

e x p e r i m e n t e d  wi th  m a n y  e x a m p l e s  and  f o u n d  this a p p r o a c h  to be  ve ry  successful .  F o r  

example ,  even  for  the  h igh  eccen t r i c i ty  c = 19 ( f i lm shape  (1.7) wi th  a = 0) a n d  A = 500, it 

t o o k  on ly  8 i t e ra t ions  to get m o n o t o n i c  conve rgence ,  s ta r t ing  f r o m  the  lower  so lu t ion  
u = H2(1 ,  ( ,  a) .  

3. N u m e r i c a l  resul ts  and discussion 

O n c e  the  p re s su re  d i s t r i bu t i on  is k n o w n ,  the  d imens ion l e s s  w o r k l o a d  is g iven  by  

a n d  the  y c o o r d i n a t e  of  the  cen te r  o f  p re s su re  is 

2 f l  fL'/2 
Y' = - W ~ 0  ~0 y[P(x,y)-l]dxdy. 

Because  o f  s y m m e t r y ,  the  x c o o r d i n a t e  is, o f  course ,  zero.  In  the case  o f  a o n e - d i m e n s i o n a l  

t.2- 

I.@ 

H 1 = 6 

H 1 = 5 

H 1 = 4 

/ / f  HI = 3 

@.@' 

H i = 2 

l.@@' 

B.7S- 

0.50- 

@.2S. 

8.N 

@ I@@ ~ 388 4@8 ~8 6@0 7@@ B 188 200 

BEARING NUMBER, A 

H 1 = 6 

H 1 = 5 

H 1 = 4 

H 1 = 3 

H 1 = 2 

3~ 48@ S@@ 880 

BEARING NUIIBER, _A. 

Figure 2. Effect of film-thickness ratio and bearing number on bearing load for infinitely long plane-wedge films 
(a = 0 in (1.7)). 

Figure 3. Effect of film-thickness ratio and bearing number on bearing load for parabolic films (1.7) with a = 0.5. 

7~ 
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problem (for infinite sliders), work load and center of pressure are computed using 
Simpson's rule. For finite sliders, the above integrals are computed using the I.M.S.L. 

• subrouzine DBCQDU.  This routine computes an approximate double integral to a given 
table of data using a natural bicubic spline interpolant. Figures 2 and 3 illustrate the effect 
of bearing number and film-thickness ratio upon isothermal load for infinitely long 
inclined pad and curved slider bearings. Figures 4 and 5 represent the effect of curvature 
upon load for infinitely long curved sliders. In Figs. 6 and 7, notice that the pressure peaks 
near the trailing edge for increased Reynolds numbers. Numerical values of dimensionless 
load and center of pressure are listed in Table I for finite, cylindrical sliders with different 
curvatures. Notice from Table I that convexity increases and concavity decreases the work 
load. Table 2 gives the work loads for plane sliders having film-thickness ratio H 1 = 3 and 
length ratios L / B =  1, and L / B  = 0¢, respectively. From this table one can see the 
load-capacity reduction due to side flow. For high Reynolds numbers, the side flow rate is 
decreased, and the load values for the finite slider approaches that of the infinite slider. 
The stopping criterion used is lutk)--utk-1) I ~ E, E =  1 0  - 3 .  The results computed for 
E = 10 -4 show only slight improvement, less than 0.02%, over those obtained for 
E = 10 -3. For infinite sliders, the grid size Ax = 0.01 is used for large Reynolds numbers. 
A larger grid size Ax = 0.05 is recommended for small Reynolds numbers. For large 

@.8" 

A= 1.0 

A ' 0 . 5  

@.6"-I / /  / A=O.O 

A =-0.5 

A = -1.g 6.4 

@.8 ̧  

1.8- 

A = I ,  

@.5- 

A = - 

t a a [ ' l l l l t ' '  t I l l u u l ' ' ' ' l '  
B I @@ 2@e ~ 4@@ 5i~ 6 t @8 26@ 388 488 

BEARING NUMBER, A BEARING NUMBER, A. 

Figure 4. Effect of the parameter a and bearing number on bearing load for parabolic films (1.7) with eccentricity 
(~2.  

Figure 5. Effect of the parameter a and bearing number on bearing load for parabolic films (1.7) with eccentricity 
( = 5 .  
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values of  A, as expected, finier grid size helps to reduce the discretization error. 
Sometimes the improvement  in accuracy may not be that much significant. For  example, 
when a = 0 and c = 1, the work load obtained with Ax = 0.01 is 0.3820, and it is 0.3837 for 
x = 0.005. Thus, the difference is only about  0.4%. 

1.8- 

1.0- 

1.4- 

1.2. 
.A.=5 

l -  ' I I I I 1 1 1 ' 1 
0.0 8.2 i .4 tL6 0.8 1.8 

6 -  

8.~1 i.2 8.4 8.6 t.8 1.8 

x 

Figure 6. Pressure profiles for infinitely long plane-wedge gas films (a  = 0 in (1.7)) having film thickness ratio 

H 1 = 2 .  

Figure 7. Pressure profiles for infinitely long plane-wedge gas films (a  = 0 in (1.7)) having film thickness ratio 

H 1 = 6 .  

Table 1. Film shape (1.4) with H l = 3. 

A Work load Center of pressure; 

fl ffi 0.5 fl = 0.1 p = - 0.1 y-coordinate 

f i f O . 5  f i f O . 1  f i r - 0 . 1  

25 0.3122 0.2366 0.2114 0.6372 0.6887 0.6846 
100 0.6408 0.4652 0.4048 0.6629 0.6968 0.7175 
200 0.7617 0.5382 0.4584 0.6687 0.7021 0.7236 
300 0.8140 0.5693 0.4809 0.6712 0.7043 0.7259 
500 0.8732 0.6088 0.5124 0.6767 0.7106 0.7328 
700 0.8989 0.6243 0.5236 0.6779 0.7115 0.7337 

1000 0.9208 0.6378 0.5335 0.6788 0.7123 0.7344 
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In the one-dimensional case, at each iteration, the resulting linear system is solved using 
the standard tridiagonal algorithm. For finite sliders, Ax = 0.025, Ay = 0.025 are chosen 
for A < 300, and for A >/300, Ax = 0.025, Ay = 0.01 are used. To solve the resulting 
linear system at each iteration, a successive over-relaxation scheme is used. As far as 
convergence is concerned, no difficulty is experienced with this scheme. For our computa-  
tions, to, the overrelaxation parameter, is chosen near 1 (1 - 1.25) when A >/100. With 
increased grid refinement, one may have to increase to slightly. For small Reynolds 
numbers (A < 100), to is taken as 1.75. This scheme is notably inexpensive. I t  does not 
require any matrix inversion and very little storage space is needed. In contrast to this, the 
column method [1], pp. 621-623, requires (at each step) for an N X M mesh, N inversions 
of an M x M matrix and the storage of all these quantities for further multiplications. 

The following schemes are the most common ones in practice to solve (2.1). Let 

a : . ]  orou a r a .  
Su=- - H ( x ' Y ) [ - ~ x 2  + Oy 2 ] + O--x O--x + O-'-y Oy 

+2(02H + %2H) 
- -  - -  U. 

~)X 2 0y2 

Then, for k = 0, 1, 2 . . . . .  the Picard (natural linearization) scheme [3] is 

A Ou (k+l) 
Su(k+l)+ - -  - -  = O, ay 

and the Newton-Raphson scheme [2] is 

S u ( k + ~ , + A O u < k + I )  A ( ~ u ( k ) ) . ( k + l ) . . ( k ) ,  
ay 2( .k)3/2 (" - "  ' = o. 

In both these schemes, centered differences are used. These methods are hit-or-miss type. 
That  is, convergence for these schemes is unpredictable and it depends on the grid, and 
the parameters A and/ /1 .  Also, since centered differences are used for all the derivatives, 
these schemes becomes numerically unstable for large A. This numerical instability often 
leads to overshooting the answeres. Thus, even when they converge, the computed values 
are unreliable. For example, consider an infinitely long plane slider. In this case (see the 
Appendix) u - - H 2 ( 0 )  is an upper solution for (2.1). That  is, P ( y ) - - H ( O ) / H ( y )  is an 
upper solution for the pressure distribution. This P, when H 1 = 1.1, gives the work load 
w~ -- 0.0484. So, this w~ is an upper bound for this geometry for any A. This upper bound 
is also known [4] as the limiting load for A ~ oQ. However, for A = 200 with Ay = 0.05, 

T a b l e  2.  F i l m  s h a p e  ( 1 . 4 )  w i t h  H l - 1 + c = 3, f l  = 0 .  

A 50 1~ 2~  3~ 5~ 7~  1000 

Work 
load 

"L 
- -  - 1 0.3367 0.4332 0.4963 0.5229 0.5487 0.5644 0.5736 
B 
L 
- -  = ~o 0.5473 0.6028 0.6264 0.6313 0.6351 0.6405 0.6415 
B 



16 

the above two schemes [2,3] compute the work load as 0.0509, Notice that this value is 
above the upper-bound level. This example shows the overshooting of these schemes. This 
overshooting continues to grow as A increases. On the other hand, for the same grid size 
and A, our scheme calculates the workload as 0.0467. Since a weighted upwind-difference 
form is used for the first-order derivative in the nonlinear part, our scheme is numerically 
stable independent of A, eccentricity and grid. Further, this gives guaranteed convergence. 
As a second example consider the film shape (1.7) with a = 0, c = 19. For A = 500, both 
the above schemes do not converge. However, our scheme converges. The starting solution 
is taken as u -- HE(y )  which corresponds to the ambient pressure P - 1. Results are listed 
in Table 3. 

Failures of the Picard method have been reported at several places in the literature 
[1,2,3]. In [1], pp. 583, it is noted that, "typically no convergence is obtained for local 
values of A of about 50" (film shape is not specified). In [2], Newton-Raphson scheme is 
proposed as a better choice. However, because centered differences are used, it is found 
(for the example discussed) that this method becomes numerically unstable faster than 
Picard as A increases. In conclusion, it is clear that our scheme is more powerful in solving 
extreme situations (i.e., very large A and very large eccentricity). 

It  is known that asymptotic methods give good results for small eccentricity [4]. But, as 
noted in [4], these methods give poor results for moderate or large values of eccentricity. 
The asymptotic load value for high A is obtained from the limiting pressure distribution 
(upper solution). Depending upon A, an approximate correction is offered to the limiting 
load value W~. For  an infinite slider (1.7), the study can be found in [4], and for finite 
sliders, see [5,6] and the references therein. In order to check the validity of our results 
some of our results are listed in Table 4 below along with those obtained by asymptotic 
methods [4] for small eccentricity (film shape (1.7)). 

This table shows good agreement of our results with those already known. As noted 
before, the asymptotic analysis may not give good results for moderate or large values of 
eccentricity. According to [4], an explanation for this is that the coefficient of 1 / A  2 in the 
asymptotic expansion of P is very large when c is not small. Notice that the analysis takes 
into account only up to the first-order term in the series expansion of P in negative powers 
of A. For example, for a = 0.5, ~ = 5, and A = 100, the computed value of work load W is 
0.955. But the asymptotic method [4] gives the value IV= 0.855. Thus, the error in 

Table 3. Film shape (1.7) with a = 0, c = 19; grid size Ay = 0.01, A = 500. 

Picard [3] No convergence 
Newton [2] No convergence 
New scheme Convergence Work load = 1.1205 

Table 4. 

A a=0,¢=1 a = 0 , ¢ = 2  

Computed Asymptotic Computed Asymptotic 
value value value value 

100 0.3707 0.3712 0.6028 0.6079 
1000 0.3837 0.3847 0.6415 0.6439 
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asymptotic value is about 11.7%. As a second example, let a = 0.00, c = 10 in (1.7), and 
A = 100. The asymptotic value [4] is 1.03768, and the computed value is 0.6045. Hence, 
the error in asymptotic value is about 70%. DiPrima [4] has noted that if the two-term 
asymptotic results are correct at A -= 33.3, it follows that at this value of A the maximum 
of W will occur for a = - 1 and c = 2. But, Fig. 4. reveals that actually the maximum of W 
occurs for A -=- 65 when a = - 1 and c = 2. Figure 4 presents more accurate curves than 
those given in fig. 4 of [4] (Fig. 3.8.4 in [1], pp. 137). Moreover, calculations of other data 
like pressure distributions, frictional characteristics, etc., are not straightforward with 
asymptotic analysis. So, for a complete and accurate study of film characteristics, one has 
to adopt numerical procedures. Some analytical investigations have been reported in [7,8]. 
There, using the transformation u = p2 for the Reynolds equation, they have obtained a 
lower bound (lower solution) and an upper bound (upper solution) for the pressure for a 
one-dimensional film shape. The general purpose of the monotone method in [7] is to 
prove existence of minimal and maximal solutions. This can also be used to obtain 
analytical bounds. But, since the Nagumo constant involved there is too big (construction 
is also complicated), the method cannot be applied for practical computations of pressure 
distributions. Notice also that the method [7] does not take care the constant to be 
updated at each step which is crucial for faster convergence. Further, the treatment [7] is 
restricted to the one-dimensional case only. It is known that the numerical treatment of a 
nonlinear convection-diffusion equation of the form (2.1) presents serious difficulties 
because of the nonlinear term containing the first derivative. When the first-order term is 
dominant (the most interesting practical case) the problem becomes a singularly perturbed 
one. For mildly nonlinear problems (that is, when the first-order term is not present), 
monotone iterative methods are known [11,12]. Numerical schemes for a general nonlinear 
convection-diffusion equation with turning points and F O R T R A N  programs for the 
results presented in this paper  are given in [13]. 

Numerical values in Tables 1 -4  have been computed using an IBM 4341 computer at 
the University of Texas at Arlington. For Figures 2-7, computer runs have been made on a 
DEC-20, and the results are directly graphed using an Interactive Graphing Package 
( IGP)  available at the University of Texas at Arlington. In terms of c.p.u, time, this 
scheme is very economical. As an example, for the film shape (1.7) with a = 0, c = 1, the 
c.p.u, time on DEC-20 is 3.9 seconds for 30 values of A ranging from 10 to 700. 

Conclusion 

An inexpensive, accurate, and reliable numerical scheme is presented for gas-lubricated 
slider bearings. Convergence of our scheme is proved independent of Reynolds numbers 
and film-thickness ratios. The scheme is numerically stable for all grid choices. Compari-  
sons are made with other existing techniques, numerical as well as asymptotic. The pr.esent 
scheme is more powerful in handling the extreme situations, viz., high eccentricities and 
large Reynolds numbers. 
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Appendix 

A n  off-diagonally nonposit ive matrix A ~ L ( R  n) is referred as a Z-matrix, and an inverse 
positive Z-matrix is called an M-matrix. 

THEOREM~A.1. [9]: A Z-matrix  A ~ L (  R ~) is an M-matrix  i f  and only i f  there exists a vector 
z ~ R n such that z >1 O, Az  >~ O, and E~=laijzy > O(i = 1, 2 . . . . .  n), 

For  the proof  of  our  main results, the test vector z can be taken as e, e i ~ l  
(i = 1, 2 . . . . .  n). Next, the definition of  a lower solution and an upper solution are given. 

For  simplicity, express the elliptic equation (2.1) as 

( an a u )  (A.1) x72u=F x , y , u ,  Ox '  ay ' 

where V 2 = _ (a 2 / a x  2 + ~ 2//ay 2). The boundary  condit ions in (2.1) are denoted by 

Bu = gp(x, y ) .  (g .2 )  

A function _u is said to be a lower solution of  (A.1)-(A.2)  if it satisfies 

( Oul, V 2 u < F  x , y ,u_ ,  a x '  a y ]  B u < ~ ( a ( x , y ) .  (A.3) 

A function fi is said to be an upper  solution of (A.1)-(A.2)  if it satisfies (A.3) with 
inequalities reversed. Now, it can be verified that u = H 2 ( x , y )  is a lower solution, 
provided the film is convergent,  i.e. aH/ay<~O.  If  a 2 H / ~ y  2 GO, then u ( x ) =  
m i n ( H E ( x ,  0), HE(x, 1)) is a lower solution. For  a divergent film, ~ - H 2 ( x , y )  is an 
upper  solution. If  the film is ha t ing  nonnegative crown height in the sliding direction, then 
fi(x) = m a x ( H 2 ( x ,  )), HE(x, 1)) is an upper  solution. 
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